a2 United States Patent
Kogge et al.

US009417805B2

US 9,417,805 B2
Aug. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54) EXPORTING COMPUTATIONAL
CAPABILITIES INTO A BLOCK-ORIENTED
DISK MEMORY

(71) Applicant: Emu Solutions, Inc., South Bend, IN

(US)
(72)

Inventors: Peter M. Kogge, Granger, IN (US);

Edwin T. Upchurch, Austin, TX (US)
(73)

Assignee: EMU SOLUTIONS, INC., South Bend,

IN (US)
*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35

U.S.C. 154(b) by 42 days.

@
(22)

Appl. No.: 14/541,838

Filed: Nov. 14, 2014

Prior Publication Data

US 2015/0143036 Al May 21, 2015

(65)

Related U.S. Application Data

Provisional application No. 61/906,067, filed on Nov.
19, 2013.

(60)

Int. Cl1.
GO6F 3/06
U.S. CL
CPC

(1)

(52)

(2006.01)

GO6F 3/0619 (2013.01); GO6F 3/0659
(2013.01); GOGF 3/0665 (2013.01); GO6F
3/0679 (2013.01); GO6F 3/0689 (2013.01)

60

62

Conventional
Host

%

Memory references

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,185,150 Bl
OTHER PUBLICATIONS

2/2007 Kogge

Van Essen, et al., “DI-MMAP: A High Performance Memory-Map
Runtime for Data-Intensive Applications,” High Performance Com-
puter, Storage & Analysis (SCC), 2012 Companion; pp. 731, 735,
10-16 (Nov. 2012).

Seung, et al., “Energy Savings through Embedded Processing on
Disk Systems,” Proceedings of the 2006 Asia and South Pacific
Design Automation Conference (ASP-DAC °06); IEEE Press, 128-
133 (2006).

Primary Examiner — Kevin Verbrugge
(74) Attorney, Agent, or Firm — Gesmer Updegrove LLP

&7

A memory controller is provided that includes a host system
interface that receives requests from applications and sends
read or write commands to a disk for data retrieval. A thread-
let core provides threadlets to the host system interface that
enable the host system interface to use a logical bit address
that can be sent to a memory device for execution without
having to read and write entire blocks to and from the memory
device.

ABSTRACT

23 Claims, 4 Drawing Sheets

66

Systam j
» Target Memory Address

\nterconnaction » Threadiet PC
Routing done « & few working registers
on basis of + {Very} short program

target address

{3*',
converted to threadiels,
with ability to send
Foncion Galls

“to the memory”

Threadtet Core:
« Very simple multi-threaded dataflow

« Interacts directly with memory Interface 62



US 9,417,805 B2

Sheet 1 of 4

Aug. 16, 2016

U.S. Patent

vt

Alowaiy Aowan Asousaiy Asowsapn

Wvya WvdaG WvYQ Wvya
R

4%

$32 ep:!xul 55

T°'Did
0
01
diyy I9j|onuo] yseid .
S e o =y
slossanosd : " 1
3RIpEaIy dpnui o3 1 103 . 1
papesddn eqdew M oo p 00 Aiowsiy ! acoding “
18y swalshsqrs E3EUEDY ] WNYYS Bads
24€ SaX0g PRpRYS ¥ “*
v 9 4 F ¥ v }
diyy 3} oy | dgd i G 123UV0IIILY "
yseld i useld i} ysed jt used jeulsiy| paieys e
1 3 Bjonuedy  #7 5
- 2383} HIOMIBN 1
i
x> Jafjodiues {
i 97819941 JJOMIBN 1
o i
=38
5 JaloIuoy !
@ aneiiayl IoMia __
[
1
Jafjoauc)
-1 ] 228419101 YIOMIBN _L
1
¥ r i
diyy | diyo || do 1
ysejd (| yseld §j usen L
5 o i
"\ X
’ 4
v eS| Enpuagubp) S Rapppp g

91



US 9,417,805 B2

Sheet 2 of 4

Aug. 16, 2016

U.S. Patent

9t

ob
8t 9 z'oH o
s "% 350K 03 yoeg .
I ucumur_\”h%uﬁwuﬁ ISUBLL UEIS 0} iy 1SOH 03 e L
i QSS Ui 30eld PUBLILIG) 3{NPaYIs, - I9jsuel) wiiojlad I
F
" o Fal o
1 B

1 - ! panpaLds pue - “ .
i 303 pue " ysegwody |1 aouanbag “ |
44 ” Yy ahdwe) | #00|g pesy ! puBLILIDY Yseyd wacy \
i 6 t 8 | ¥ / !
e wm we ew ww wm ww = = = o v o) =4 1

125 1 o

So 1 1
H o [
ZE ... paRidialul 99 0} " ayoen oN v 0} _
Tl puBWIWOD e | AIOUIUE (JSG Uil | wemmnp| JOAET UIONIR)SURIL A 1
IXau ananbag 20|19 va1 it 985 yseyd Ajddy g 1
4 v L8 I
! puLwWLLod pananb 1xau 1o }oeq 09
UOINIAXS 10§ ySIP 0} ASIP UM Y

spuewwo) shanbul I SPUBLLILOD puas Buiyojew andwio) |,
3 =z

e : e

B1BP PRUIS3P O} S|l Ul 385440 saplaoad uoiearddy

o€



US 9,417,805 B2

Sheet 3 of 4

Aug. 16, 2016

U.S. Patent

£

aopjleU} Alowieul YA Ajpoaap s)aeleur -

. MopRIEp papRaIY N ajduys KIsA -
, ta107) jajpealyl JAlowau 8y o5,

<9
RHERHGRTONSG

puss 03 Aige yim
‘sjaipesiy} 0 P81IGALOD

rm.vcw\ saouaigye) Aroulaiy
3,

IsOoH
[RUCIIURALOY

ssa.ppe 3361y
40 siseq uo
auop Dupnoy

wesGord poys (Aaap)
sia)siBal Hunjiom mal g«
Jd 19peaiyg .

ssalppy Koutaly jebaey -

£ A R

9

99

09



US 9,417,805 B2

Sheet 4 of 4

Aug. 16, 2016

U.S. Patent

¥ 9
8L 8
6 8
304 01 %2Bq UOREIUNWWOD
uoLINIISU] Eﬁmwa 19|pRaJIY] IS} ION sopads UORIUNS 33PEBIYL -
a|pea1y Py & suMeds Ja[pes pipeaig B|peany ,
RIPEAA PHY £05 el Aq paijioads apod i 1e)sas ‘ayded Asowal
UOIIdUNY 33NAXZ 03 PIAOL X¥I0|G IV
oL 1 mumzmp.wuw_nmmhﬁ 18 ' ‘
R I Aq pasualagal Ssuppy S3A
. | N
. i pajnoaxa ag o3 < ayoes yo0[q pat3ads peal o}
i 4 j9|pealy} —]  AJOLWBW gSS UL »| PUBLILLOD 3nanbLD pue -
i xau ananbag 0| VeI 95 | oy 19|peany puadsng |
— F 3 t < g
” UOIINIBXA 10} P 03 NSIP WUIM YT
1
: fpe | 12]PEBIYD PUDS | it oty - 0L
W - p| 32IPE324L AN20bU3 pue BjqUIBSSY Buiyojew _uu:a.:ou
5 ) T
€ z __,
) ‘patizopiad aq 01 5| Juissad0.d Jajpealy) [eidiu| B1aum
’ uolede| 6] Bji Ul 13540 SapInCId pUE 1B|PEAIY] SIONISUDD UOLIRDsddy
v

(24

08



US 9,417,805 B2

1
EXPORTING COMPUTATIONAL
CAPABILITIES INTO A BLOCK-ORIENTED
DISK MEMORY

PRIORITY INFORMATION

This application claims priority from provisional applica-
tion Ser. No. 61/906,067 filed Nov. 19, 2013, which is incor-
porated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

The invention is related to the field of memory processors,
and in particular to exporting computational capabilities into
a block-oriented disk memory.

A key component of most modern computing systems is a
disk—a device that can store large amounts of data in a
compact format, but that can access such data only in rela-
tively large blocks. Current devices fall in at least two catego-
ries: (1) rotating hard drives where a magnetic medium is
spun underneath a read/write head, and (2) a solid state drives
(SSD) constructed primarily from “flash” chips that store data
as charge in semi-conductor devices. In both cases, access is
on a “block”™ basis: a read or write request must handle some
integral number of blocks, each of a size of a few hundred to
a few thousand bits at a time.

For any data access to the entirety of a large data object
such as a file that might scale into the gigabyte range, this
blocking is at best just an inconvenience. However, any
request that wishes to access only a few bits to different
“random” locations in the object must still access a minimum
of a whole block, and if those bits must be modified, the
modification must be done to a copy of the block outside of
the device, and then sent back in. For example, to modify a 32
bit entity within a 4096 bit block the device must read out
4096 bits and then accept 4096 bits in return. The time to
transfer this 8192 bits over the interface to the disk is 256 time
longer than to transfer the 32 bits that have to change.

Even worse, if different parts of the same block may in any
way be subject to simultaneous updates from several different
processes external to the disk, every single one of these
updates must perform this double block transfer, with some
additional (and perhaps quite complex) locking and/or syn-
chronization to prevent some of the updates from being lost.

The net result is that many non-sequential accesses to small
amounts of data can have an extraordinarily deleterious effect
on the disk’s performance. As we move towards big data
problems where such non-uniform accesses become more
and more common, the inability to do anything other than
read and write relatively large blocks of data is rapidly
becoming the overall bottleneck to increasing performance,
regardless of how much external processing is available.

SUMMARY OF THE INVENTION

According to one aspect of the invention, there is provided
a memory controller. The memory controller includes a host
system interface that receives requests from applications and
sends read or write commands to a disk for data retrieval. A
threadlet core provides threadlets to the host system interface
that enable the host system interface to use a logical bit
address that can be sent to a memory device for execution
without having to read and write entire blocks to and from the
memory device.

According to another aspect of the invention, there is pro-
vided a method of controlling commands sent to a memory.
The method includes receiving requests from applications to

10

15

20

25

30

35

40

45

50

55

60

65

2

send read or write commands to a disk for data retrieval using
a host system interface. Also, the method includes generating
threadlets to the host system interface using a threadlet core
that enable the host system interface to use a selective number
of bits that can be sent to a memory device for execution
without having to read and write entire blocks to and from the
memory device.

According to another aspect of the invention, there is pro-
vided a method of performing the operations of a memory
device. The method includes constructing a threadlet and
providing an offset to a location where initial threadlet pro-
cessing is to be performed. Also, the method includes com-
puting matching logical bit address (LBA) within the memory
device, and assembling and sending the threadlet to the
memory device. The threadlet is placed in a queue for execu-
tion while dequeueing a previously executed threadlet. More-
over, the method includes determining if a block of data is in
a second memory device and executing the commands of the
queued threadlets, and if the block of data is not in the second
memory device suspending and enqueing a command to read
the block of data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram illustrating the internal
architecture of a SSD 2 using flash memory chips 4 for stor-
age used in accordance with the invention;

FIG. 2 is a schematic diagram illustrating the processing
flow from the time a program in a host processor determines
it needs to read some information from a file;

FIG. 3 is a schematic diagram illustrating a system with a
multiplicity of memory nodes that defines a threadlet to
extend a memory read or write interface to those nodes; and

FIG. 4 is a schematic diagram illustrating the processing
flow for threadlets running within an SSD.

DETAILED DESCRIPTION OF THE INVENTION

This invention addresses a system where the concept of a
mobile thread is implemented into a disk’s controller function
so that a short program to access (read, write, or modify) a
small number of bits can be sent into the disk for execution
there, without having to read and write entire blocks to and
from the device. The result is higher useful bandwidth on the
interface between the device and the rest of the computing
system, and significantly reduced complexity when multiple
such modifications may in fact be applied at the same time to
data in the same block.

A “disk” is the notional term for a system with a very large
amount of memory capacity from which relatively large
amounts of information, termed “blocks,” can be read or
written at a time, and where “relatively large” is in relation to
the size of data read or written by a typical individual com-
puter instruction inside a processor. Today the latter is likely
to be 8 bytes whereas the former is 512 bytes or larger.

Current implementation technologies for such disks range
from rotating medium where data is sensed magnetically or
optically, to solid state disks (SSDs) constructed from what
are called NAND Flash chips, where data is stored as small
amounts of charge on the gates of transistors arrayed in long
strings. Technologies in the near future may use other storage
media other than flash, such as Magnetic RAM (MRAM) or
Phase Change Memory (PCM).

In terms of capacity such disks today can hold up to ter-
abytes (where 1 terabyte=1 million million bytes) of data,
whereas the typical main memory of a modern processor,



US 9,417,805 B2

3

constructed from DRAM chips, is a few gigabytes (where a
gigabyte is 1/1000” of a terabyte).

In addition, the time to access such blocks in a disk is
considerably larger than the time to access DRAM—up to
milliseconds (ms) for magnetic disks, or about 25 microsec-
onds (us) for a NAND flash, versus perhaps 100 nanoseconds
(ns) for DRAM.

An example of a modern SSD is the Micron RealSSD™
P320h Enterprise PCle Solid State Drive [Micron]. This
device has a PCI Express interface over which commands can
be sent to the device, and data may be transferred, and sup-
ports 512 byte (4096 bit) blocks.

The PCI Express protocol used by this device includes an
address and a variety of command fields which, when used in
a command packet, is interpreted by the SSD’s controller to
perform read and write functions. Together such a packet
specifies a block to access and what kind of access to perform
(read or write). Depending on the controller, it may be pos-
sible to specify “partial block” transfers that are less than a
whole block, but internal to the drive such accesses are first
translated into full block accesses.

Today a typical disk interface associates different physical
blocks of memory within the disk device with “Loogical Block
Addresses” (LBA). The computer communicating with a disk
(to be termed for the rest of this paper as a “host” processor)
thus must convert all requests from “file name “offset” into
common LBA block addresses relevant to the disk, and then
the disk’s internal controllers must translate each LBA to a
unique physical block within the device’s storage. This map-
ping need not be sequential. Currently, a relatively standard
block size for many disk technologies is 512 bytes.

The conventional use of such disks is to hold potentially
large numbers of possibly quite large “data files,” where each
file is a sequentially ordered set of data bytes, as seen by the
user. While the logical length of a file may be anything, the
physical length must be an integral number of blocks, with the
block size dependent on the underlying technology and con-
troller.

In addition, sequential blocks associated with a particular
file may not be “sequential” in terms of the blocks as stored in
the disk. It is up to the computer’s operating system, using
“directory” information, to determine in what L.BA on a
device is a desired part of a file.

A type oftile of direct relevance to this invention is a “swap
file.” Such a file actually contains the overall contents of the
host processor’s memory for a particular application, termed
its “virtual memory.” Depending on the application, this may
be very much larger than the physical DRAM memory that
may be actually addressable by instructions executing in the
host processor. A “virtual memory translation” mechanism
implemented in the processor then takes addresses generated
by program instructions into the virtual memory and deter-
mines in which physical “page” of DRAM memory this vir-
tual address lies. If the “virtual page” does not currently
correspond to any DRAM page, the processor’s operating
system will determine which disk holds the swap file, and
what are the LBAs into that swap file to which the current
contents of the page map, and then request the associated
LBA blocks from the disks holding the swap file.

If there is no room in the DRAM currently allocated to the
application for the incoming blocks, it may be necessary to
make room by moving some virtual page from DRAM back
to its location in the swap file, especially if it has been modi-
fied over the original values in the swap file. This requires
computing the matching [LBAs for the swap file blocks for the
outgoing page, and writing the data back to the disk at those
LBAs.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 is a schematic diagram illustrating the internal
architecture of a SSD 2 using flash memory chips 4 for stor-
age used in accordance with the invention. SSDs 2 for other
technologies are similar in architecture. Sets of these flash
chips 4 are connected in parallel on Flash Memory Channels
6. Multiple channels 6 and flash chip 4 sets may be present in
a single SSD, with each channel capable of independent
operation.

The functions inside the dotted box 8 are often integrated
into a single custom “SSD Controller” logic chip 8 and
include a separate “Flash Channel Controller” 10 for each
Flash Channel 6 to govern operations on that channel and
control data transfers between the channel and other memo-
ries in the SSD. A number of typically DRAM memories 12,
have DRAM chips 10 external to the SSD controller, and
“DRAM Memory Controllers” 14 lie within the SSD control-
ler 8. These memories are typically used to cache recently
accessed blocks from the disk. Network Interface Controllers
(NICs) 16 can govern the transfer of data and commands
between the SSD and outside processors over the off-SSD
interfaces such as PCI Express.

A number of General Purpose Cores 18 are used that are
small processors of conventional design capable of executing
the programming needed to interpret and run an SSD. Some
number of Special Purpose Engines 20 are capable of han-
dling compute-intensive operations such as computing and
checking Error Correcting Codes on blocks of data going to or
from the flash chips 4. Internal memory is used for tempo-
rarily by the various other systems. A Shared Internal Inter-
connect allows all these units to exchange data and com-
mands with each other. This may be either one or more busses
or some sort of on on-chip interconnection network

FIG. 2 shows a notional processing flow 24 from the time
a program in a host processor determines it needs to read
some information from a file (either as an explicit access to a
data file or as a virtual memory translation trap) until the time
the data from the disk is back in memory. A program in the
host determines from the data required which disk the data
resides on and what LBA(s) within that disk contains the data,
as shown in step 26. A set of commands is created and sent to
the disk to perform the desired access, as shown in step 28.
Within the disk the commands may be enqueued until the disk
can execute them, as shown in step 30. This enqueing may be
on the external DRAM or in some memory within the con-
troller. Commands are dequeued and interpreted in some
order, as shown in step 32.

The LBA specified by an individual command is checked
against the LBAs associated with blocks cached in the con-
troller, typically in the off-controller DRAM memory, as
shown in step 34. This address tag checking may be done
either in hardware (as in the memory controllers) or by pro-
grams running in a general purpose core in the controller. If
the desired block is found, processing continues at step 46;
otherwise step 36.

If the specified blocks are not cached, then the LBAs are
translated to specifications as to which blocks in which flash
chips on which flash channels, as shown in step 38. This
process is commonly referred to in the literature as “FTL"—
Flash Translation Layer. The commands to access the desired
flash blocks are created and scheduled for execution by the
appropriate flash controllers, as shown in step 40. CRC (Cy-
clic Redundancy Checks) and ECC (Error Checking Codes)
is performed on the data to remove data errors, as shown in
step 42. This may often be done by special purpose engines in
the controller. The corrected data is placed in the SSD cache,
as shown in step 48. A block as read from a flash chip is often
bigger than a block as requested from a host, so there may be



US 9,417,805 B2

5

additional LBA blocks placed in the memory cache that may
prove useful later if the host later requests additional nearby
blocks. Commands are created and scheduled to transfer the
requested data back to the host, as shown in steps 46 and 44.
These commands are executed by the Network Interface Con-
trollers to perform the transfers out of the SSD.

Writing data back to the disk from a host is separate but
similar. Unless otherwise specified, the above actions are
typically performed by a program running on a general pur-
pose core in the controller. As enqueued commands from the
host are completed, other commands from the host are
dequeued and started. It is possible to reverse steps 32 and 34,
and cache blocks not on LBAs but on flash block addresses as
determined by the FTL process 34.

Much of'the original implementation of the above technol-
ogy was developed at a time when there is typically only a
single thread from a single program running at a time in the
host. Simple multi-programming—switching the processor
to run a different application—was able to overlap times
when one program had to wait for the disk to respond with a
page from the program’s swap file that the application
needed.

Current multi-socket multi-core systems running multi-
threaded applications have complicated all of this. Such sys-
tems allow applications where possibly hundreds of concur-
rent threads may be running as part of the same application at
the same time, all sharing the same virtual address space.
Clearly this increases the demand for pages from the virtual
memory system, especially as different threads access differ-
ent pages. There is also likely to be an increased need for
prematurely flushing modified pages back to the swap file to
make room for the newly requested pages. In addition, syn-
chronization between threads requires atomic operations on
synchronization variables in memory, which in traditional
architectures requires a great deal of cache coherency opera-
tions to ensure proper operation.

The net effect is a significant growth in disk to processor
traffic associated with pages where only a small amount of the
data is referenced and modified before the page has to be
bounced back to the swap file.

Shared memory multi-threaded programs are not the only
type of applications that are subject to such performance hits.
With the advent of large transactional database systems, and
more recently “Big Data” analytics applications, there are
more and more applications where multiple distinct programs
will want to share the same files(s) at the same time, and hit
the same kinds of limits as above, where there is a huge
amount of page traffic between disks and processor to transfer
blocks of which only a very small part are referenced or
modified. Examples of this include updates to individual
records within a database in a shared file. Locks are set on an
object by object basis within the file. Data is accessed in an
indirect fashion within a data structure stored within a disk.
This is of particular use for structures such as sparse matrices
or large graphs. Search functions may wish to locate some
record(s) that satisfy some often simple tests within a large
database stored within a file. Without the ability to make the
test in situ, the entire data set may have to be read out of the
device and transferred to the host.

The approach taken in by the prior art is oriented towards
using SSD-like devices to enable larger working sets than can
fit in main memory for data-intensive applications by greatly
streamlining the process of determining which block(s) to
transfer between where on disk and host memory, but does
little to avoid the need to actually transfer data.

While modem SSDs, especially using flash memory, have
greatly increased the bandwidth and latency of disks for the

10

15

20

25

30

35

45

50

55

60

65

6

above applications, the processing side is growing far faster
than the interface bandwidth. What is needed is a mechanism
to avoid much of the low efficiency traffic from appearing on
the interface by performing computation within the disk sys-
tem. Doing so has the advantageous side-effect of also reduc-
ing the pressure on what DRAM memory is available within
the processor by eliminating the need to store low-lifetime or
sparsely referenced pages.

FIG. 3 show a mobile programming platform of that
defines a mechanism (termed a “threadlet”) 66 to extend a
memory read or write interface. The invention includes a
conventional host 64 embodied, such as PCI Express, where
short functions can be embedded into a memory request, and
executed at the memory interface by a very simple processing
core (termed a “Threadlet core” in FIG. 3—existing imple-
mentations require less logic than needed for the memory
controller for conventional DRAM memory). FIG. 3 also
indicates that multiple memory subsystems 62 may be inte-
grated together to provide more capacity as seen by the host.

These threadlet functions can not only implement data
transfers (reads and write) and sequences of computations,
but also atomic operations, where an update to some
addressed field within a block is performed inside the device,
with a guarantee that the read-compute-write required for the
update can be done in a way where there is a guaranteed no
possible interference from other updates to the same or
nearby fields. In addition, the referenced invention also per-
mits such threadlets to spawn other threadlets that may
execute against the same or other regions, independent of the
parent threadlets. Finally, this same thread of execution car-
ried by these threadlets may change the focus of its operation,
permitting movement to a different address and performance
of other functions as required, all without having to return to
the host until the computation is complete.

Examples of threadlet programs useful for execution on such
devices include:

Simple modifications to small fields within a file, such as

updating a record in a database file.

Operations to locations in a swap file that correspond to
atomic operations into an application’s virtual memory
for synchronization or locking between multiple threads
on the host processor.

Searching a linear array for an entry that matches, espe-
cially as in an index file for a database, or as a search in
aflat database where the fields to be tested in each record
do not take up the whole record.

Searching a more complex structure such as a B-tree on
disk, where once one vertex in the B-tree has been
touched, there may be several other entries randomly
located in the B-tree to be looked at, potentially in par-
allel by spawned child threadlets.

Searching for, and then updating, a record in place.

Doing any of the above in a system where the data is kept
on the disk in encrypted form, and should not leave the
disk unencrypted.

Traversing graphs where edge lists (lists of pointers to
other vertices in the graph) are kept in disk files and point
to other vertices with other edge lists.

The ability for a threadlet to migrate its point of execution
based on address, and to quickly and naturally spawn other
threadlets distinguish it from other technologies such as Java
applets.

The invention proposes mechanisms for inclusion of
threadlet technology within a disk and especially within an
SSD using technology such as flash chips. This inclusion
starts with adding to the host’s programming the ability to
send not just read or write commands to a disk but threadlet



US 9,417,805 B2

7

packages that have within them the following: (1) an indica-
tion that this is a threadlet and not a conventional command;
(2) an address, typically based on an LBA for compatibility
with conventional disk reads and writes, that points to data
within the SSD against which some function is to be initially
performed; (3) the function to be performed against that
address. The code defining this function’s actions may
accompany the threadlet, or be prestored in the SSD, or both;
(4) operands to be used by the threadlet in the computation;
and (5) Information as to how to communicate back to the
host upon completion. In most cases such information may
simply be part of the operand set provided by the host, asin a
host address to which completion data can be written.

Note threadlets permit standard libraries to be loaded into
the SSD in advanced and then chained together as desired by
code accompanying the threadlet. This latter allows “one
time” operations to be sent over without the complexity of
creating and managing a library of functions on the disk

FIG. 4 is a schematic diagram illustrating the processing
flow for threadlets running within an SSD. As with a normal
disk read or write, a program in the host determines that some
processing is to be done starting at some location in a file, and
computes the LBA for that location within the disk holding
the file, as shown in step 70. The other parts of the threadlet
(operands and code) are assembled and sent along with the
LBA to the disk, as shown in step 72. At the disk side the
command is enqueued until it is possible to start it, as shown
in step 74. Depending on implementation, this queue can be
the same as for other disk commands or may be a separate one
for threadlets. When resources are available to start the
threadlet, it is dequeued and its execution is started, as shown
in step 76. This execution begins with the first instruction
specified as part of the threadlet’s code, as shown in step 82.
Once the threadlet’s program reaches an instruction where a
memory reference is to be made, initially using the supplied
LBA, a check is made if the specified block is in the disk’s
memory cache, as shown in step 78. If the specified block is
not present, the threadlet is suspended and a flash read com-
mand sequence is enqueued to read the specified block, as
shown in step 80.

If'the threadlet’s code computes a new address that is not in
the same L.BA, a repeat of step 78 is performed. If the thread-
let spawns a child threadlet to pursue an independent execu-
tion, either the child or the parent is enqueued as in step 74,
and the other threadlet continues execution. If the threadlet
reaches an instruction signaling a communication back to the
host, the appropriate command and associated data is
enqueued internally as in step 30 of FIG. 2. If the threadlet
reaches a point where its execution is complete, its resources
are surrendered and given to the next threadlet, as in step 76.

There are at least two approaches to implementing the
processing associated with a threadlet. First is in hardware via
a small processing core integrated with the various memory
controllers within the SSD. In these cases, a NIC would
identify that an incoming packet from a host is a threadlet
rather than a conventional command, and send the threadlet
initially to the threadlet core in the appropriate memory con-
troller for the internal disk cache.

The second approach is via software whereby the original
threadlet is enqueued as any other command. When the
threadlet is dequeued, the program in the general purpose
core that interprets commands from the host recognizes that
this is a threadlet, and starts up a “threadlet emulator” that
finds the associated code for the threadlet and performs all the
operations that a hardware implementation might perform,
but at a slower rate. Such an emulator is no different in general
structure from any other emulator, such as a Java Virtual

10

15

20

25

30

35

40

45

50

55

60

65

8

Machine where Java bytecode programs are executed by a
program in a way that derives the same results that would have
been achieved if a hardware JVM core had been built.

It should be noted that this slower software implementation
approach may be perfectly adequate for at least current SSDs
since the access time for data from flash chips today is often
25 usec or longer, and even a simple core running at a GHz
could emulate thousands of threadlet instructions in that time
frame.

It is also possible for implementations to do a mix of both,
with the hardware implementation used as long as the desired
data is in the disk cache, and software emulation used when
the desired data is in flash.

Other options in implementation are also possible. If, for
example, the flash memory controllers of FIG. 1 buffer flash
blocks as they are read from the flash chips, it is also feasible
to include a threadlet core in or near the flash controller, so
that threadlet execution can be performed directly against the
flash buffer, before it is transferred to the memory buffer.

It is also an implementation option in systems that hold
multiple memory channels, either for DRAM or flash, to have
multiple threadlet cores, and allow individual threadlets to
migrate between memory controllers as necessary as their
programs compute new addresses.

In cases where interfaces such as PCI Express are used
where both ends of an interface can originate messages and
use a common address space to identify the destination, it is
also possible to create systems where there are multiple host
systems, multiple threadlet-enhanced disks, and perhaps
additional nodes of pure conventional memory with threadlet
cores embedded in them. Multiple PCI Express links off of
each disk, and/or commonly available PCI Express routers,
then allow complex systems such as FIG. 3 to be constructed,
where threadlets may not only migrate within a single disk but
migrate freely between disks or memory nodes. This requires
a LBA address space for a single disk to be subsetted into a
larger address space that can distinguish between the LBAs
for different disks, but this is the kind of subsetting for which
networking protocols such as PCI Express was designed.

The net effect is that with threadlet technology it is possible
to now write functions that are executed by threadlets regard-
less of where the associated data resides, without the function
having to be aware that the actual data resides on potentially
different disks or storage media.

Other link protocols such as Hypertransport™ have prop-
erties similar to PCI Express that would make them likewise
usable.

The invention described here enables a program running in
a conventional processor to execute a piece of code against
some locations within a file that is present on an attached disk
drive without having to have the associated pieces of the file
transported from the disk to the host, and back again. This can
profoundly reduce the traffic between the host and the disk,
allowing the now freed bandwidth to be used by host appli-
cations that really need host access to file data.

Although the present invention has been shown and
described with respect to several preferred embodiments
thereof, various changes, omissions and additions to the form
and detail thereof, may be made therein, without departing
from the spirit and scope of the invention.

What is claimed is:

1. A memory controller comprising:

a host system interface that receives requests from appli-
cations and sends read or write commands to a disk for
data retrieval; and

a threadlet core that provides threadlets to the host system
interface that enable the host system interface to use a



US 9,417,805 B2

9

logical bit address that can be sent to a memory device
for execution without having to read and write entire
blocks to and from the memory device.

2. The memory controller of claim 1, wherein the host
system interface comprise PCI Express.

3. The memory controller of claim 1, wherein the memory
device comprises a flash drive.

4. The memory controller of claim 1, wherein the threadlets
comprise an indication that a threadlet is not a conventional
command.

5. The memory controller of claim 1, wherein the threadlets
comprise an address, typically based on an LBA for compat-
ibility with conventional disk reads and writes, that points to
data within a flash drive against which some function is to be
initially performed.

6. The memory controller of claim 1, wherein the threadlets
comprise information as to how to communicate back to the
host system interface upon completion.

7. The memory controller of claim 1, wherein the threadlets
perform atomic operations, where an update to some
addressed field within a block is performed inside the
memory device, with a guarantee there is no possible inter-
ference from other updates to the same or nearby fields.

8. The memory controller of claim 1, wherein the threadlets
spawn other threadlets that execute against the same or other
regions of the memory device, independent of the parent
threadlets.

9. The memory controller of claim 1, wherein the threadlets
are executed within a flash drive.

10. The memory controller of claim 1, wherein the thread-
lets are executed regardless of where the associated data
resides on different disks or storage media.

11. A method of controlling commands sent to a memory
device comprising:

receiving requests from applications to send read or write

commands to a disk for dataretrieval using a host system
interface; and

generating threadlets to the host system interface using a

threadlet core that enable the host system interface touse
a selective number of bits that can be sent to a memory
device for execution without having to read and write
entire blocks to and from the memory device.

12. The method of claim 11, wherein the host system
interface comprise PCI Express.

13. The method of claim 11, wherein the memory device
comprises a flash drive.

10

15

20

25

30

35

40

45

10

14. The method of claim 11, wherein the threadlets com-
prise an indication that a threadlet is not a conventional com-
mand.

15. The method of claim 11. wherein the threadlets com-
prise an address, typically based on an LBA for compatibility
with conventional disk reads and writes, that points to data
within a flash drive against which some function is to be
initially performed.

16. The method of claim 11, wherein the threadlets com-
prise information as to how to communicate back to the host
system interface upon completion.

17. The method of claim 11, wherein the threadlets perform
atomic operations, where an update to some addressed field
within a block is performed inside the memory device, with a
guarantee there is no possible interference from other updates
to the same or nearby fields.

18. The method of claim 11, wherein the threadlets spawn
other threadlets that execute against the same or other regions
of the memory device, independent of the parent threadlets.

19. The method of claim 11, wherein the threadlets are
executed within a flash drive.

20. The method of claim 11, wherein the threadlets are
executed regardless of where the associated data resides on
different disks or storage media.

21. A method of performing the operations of a memory
device comprising:

constructing a threadlet and providing an offset to a loca-

tion where initial threadlet processing is to be per-
formed;

computing matching logical bit address (LBA) within the

memory device;

assembling and sending the threadlet to the memory

device;
placing the threadlet in a queue for execution while
dequeueing a previously executed threadlet;

determining ifa block of data is in a second memory device
and executing the commands of the queued threadlets,
and if the block of data is not in the second memory
device suspending and enqueing a command to read the
block of data.

22. The method of claim 21, wherein the threadlets are
executed using a network interface controller (NIC).

23. The method of claim 22, wherein the NIC identifies if
an incoming packet from a host s a threadlet rather than a
conventional command, and sends the threadlet to a threadlet
core for execution.



